
Rapid Sensing of Material Affordances 

Martin Giesel and Qasim Zaidi 
Graduate Center for Vision Research, SUNY College of Optometry,         

 New York, NY10036, USA

 

 
Abstract— People can make rapid visual judgments of the 

affordances of materials. The inferential problems created by the 

interactions of illumination-geometry with 3D material-structure 

and object-shape can be simplified by heuristics based on rapidly 

extracted image information. We demonstrate that material 

properties, such as roughness, thickness and flexibility, are 

characterized by specific scales of luminance variations, and that 

percepts of these qualities are a function of the relative energy in 

corresponding spatial-frequency bands. Cortical mechanisms 

could estimate material properties by combining the parallel 

outputs of frequency-selective neurons. Similarly, a hardware 

implementation using oriented multi-scale filters in parallel could 

also do rapid remote sensing of material properties. 

Keywords: material affordances, material perception, spatial 

frequency filters, parallel processing  

I. INTRODUCTION  

Estimating material properties is often at least as important 
as recognizing object classes [1-5]. When running on a path it 
is necessary to make rapid judgments to avoid areas that may 
be slippery, muddy, or flooded. When reaching for sandpapers 
while working on wood, we usually make rapid visual 
judgments of the roughness. Visual inferences are especially 
important when judgments have to be made rapidly for 
materials at greater distance than arms’ length. In all of the 
examples above, the intended use of the material specifies the 
relevant affordances [6], i.e., properties that allow particular 
uses. Affordance judgments are based on the retinal images 
projected from interactions between illumination-geometry, 
material-structure and object-shape. Without external 
constraints, the physics of these interactions are too involved 
[7,8] for the visual system to estimate material structure by 
inverse optics, yet perceiving material roughness or 
slipperiness shows that humans can, to a certain degree, rapidly 
infer the underlying physical structure from the retinal image.  

An attractive possibility is that we use heuristics based on 
rapidly extracted image features to infer affordances. In human 
perception, such image features have been proposed for various 
material properties, for example, X-junctions [9] and contrast 
relations for transparency [10], or image motion [11] and 
skewness of luminance statistics [12] for gloss. Heuristics work 
well when they are reliably related to 3D configurations, e.g. a 
correlation between the perceived roughness of textures and 
their fractal dimension works, because the fractal dimension of 
3D scenes and the fractal dimension of their images are 
identical [13].  

We summarize and build on the low-level perceptual 
mechanisms demonstrated by [4] for the identification of the 
material properties flexibility, thickness, and roughness. This 

mechanism estimates 3D surface properties from the 2D 
frequency representation of images.  

Our results suggest, that a parallel processing scheme of 
spatial frequency based filters might enable rapid identification 
of many material properties. Such a scheme would utilize the 
repetitive 3-D structure of fabric-like materials that is mainly 
conveyed by 3-D shape from the scale of luminance variations 
and could thus be generalized to real-time robotic vision. 

II. FREQUENCY-BASED HEURISTICS FOR MATERIAL 

PROPERTIES 

To investigate the perception of material properties, we 
chose images of fabrics, since they are familiar materials that 
come in a wide variety with diverse affordances. Fabric 
properties are a function of the nature of the fiber and the 
structure of the knit or weave. Since these structures vary 
within a restricted spatial scale, an additional advantage is that 
most fabrics are examined within a narrow range of distances, 
similar to what we used in our experiments. 

Nine paid observers rated 256 color images of fabrics on 
four opponent affordance dimensions: soft – rough, flexible – 
stiff, warm – cool, and water-absorbent – water-repellent, using 
five-point scales. To guide observers, we gave them questions 
aimed at potential uses: “If you felt this material on your skin, 
would it feel soft or rough?”, “If you folded or draped this 
material, would it be stiff or flexible?”, “Would clothes made 
of this material keep you warm or cool?”, “Would you use this 
material to repel water or would you use it to absorb water?”.  

Fig. 1A shows examples of the classifications for each 
affordance dimension, illustrating that even images placed in 
the same affordance category vary on multiple perceptual 
dimensions. In addition, some properties were strongly 
associated with others (Fig. 1B, 1C). We tabulated the 
contingency table of frequencies with which an image had been 
rated in the two highest scale values for each of the eight 
properties, and used Correspondence Analysis  (SVD applied 
to χ2 association statistics [17]) to reduce the dimensionality of 
the problem. The first dimension (CA1), which explained 
57.1% of the total variance in the data matrix, largely coincided 
with the properties soft and flexible on the positive side, and 
their opponents, rough and stiff, on the negative side. The 
second dimension (CA2), which explained 24.8% of the total 
variance, was closest to the material properties cool on one end 
and warm on the other. As would be expected, the perceived 
warmth of a fabric is often a function of its perceived thickness. 
Absorbent sensibly is closer to warm and soft, while repellent 
is closer to stiff and rough. Based on the dimensionality 
reduction, we focused the subsequent image analyses on  

Support: NEI grants EY07556 & EY13312 (QZ), DFG grant GI 806/1-1 (MG) 



Figure 1.  Results of the rating experiment. (A) Examples of materials with 

highest observer consensus for four opponent material property pairs. (B) 

Strongest associations across material properties. (C) Results of the 
Correspondence Analysis. The two axes are the two orthogonal dimension 

determined by the Correspondence Analysis. The locations of the properties 

on these axes are shown in red (FLEX = flexible, WABS = water-absorbent, 
WREP = water-repellent). 

materials classified as soft or rough and on thin and thick 
appearing materials. A visual inspection of the soft and rough 
images in Fig. 1A suggests that the size of the dominant 
structure or pattern is a distinguishing cue between them. 
Rough materials have a fine-grained structure with sharp 
transitions, whereas soft materials have larger structures with 
smooth transitions. Within the soft materials there seems to be 
a further subdivision into a group of thicker looking fabrics, 
and a group with thinner fabrics that contain broad undulations, 
probably due to the suppleness of the fabrics. 

To determine the dominant scale of a material's structure, 
we analyzed the images' amplitude spectra. Since we found no 
obvious effect of color in the classification experiment, we 

 

Figure 2.  Comparisons of amplitude spectra for opponent material properties 

summarized by spatial frequency histograms. (Left column) Fabric images 

with their amplitude spectra. (Right column) Histograms of amplitude 

distributions across spatial frequencies. The colored parts of the bars indicate 
the amount by which one image exceeds the other. (A) undulation. (B) 

thickness. (C) roughness. 

used gray-scale versions of the images for the frequency 
analysis. Fig. 2 shows amplitude spectra of pairs of fabrics 
chosen to be exemplary of the opposite ends of the undulation 
(Fig. 2A), thickness (Fig. 2B), and roughness (Fig. 2C) 
properties. The histograms in the second column of Fig. 2 show 
the relative energy in various bands of spatial frequencies. The 
colored parts of the bars indicate the amount of energy by 
which one of the fabrics exceeds the other one in a given 
frequency band. The spectra of undulated fabrics contained 
more energy at low frequencies as compared to spectra of flat 
fabrics. Spectra of thick and thin fabrics differed in a frequency 
band slightly higher than the first band, and spectra of rough 
fabrics contained more energy at middle-frequencies than 
spectra of soft fabrics. 



III. IMAGE MANIPULATIONS  

To determine whether the amount of energy at certain 
spatial scales systematically influences the perception of the 
material properties undulation, thickness, and roughness, we 
chose three bands of spatial frequencies based on the image 
analysis: A low-frequency band corresponding to undulations 
in fabrics covering 2–8 cycles per image (cpi) or 0.57–2.29 
cycles per degree (cpd), a frequency band corresponding to the 
thickness of the weave or knit (8–15 cpi & 2.29–4.28 cpd), and 
a middle-frequency band corresponding to the roughness of the 
fabric (23–53 cpi & 6.57–15.14 cpd). 

To verify that these bands are related to their corresponding 
material properties, we assessed the appearance of images as a 
function of relative energy in the three bands. To increase or 
decrease the energy in a frequency band, the frequency band 
was multiplicatively scaled. To keep the sum of the energy 
across the amplitude spectrum constant, the remainder of the 
amplitude spectrum was scaled accordingly. The manipulated 
images had the same mean as the original images. 

 Fig. 3 shows the results of multiplicatively scaling the 
energy in each of the three bands while keeping the overall 
energy constant. The icons in the left-most column of Fig. 3 
indicate the spatial frequency bands. Increasing the energy in 
the low-frequency band (Fig. 3A, Movie 1), inflates the quilt, 
whereas decreasing the energy deflates it. The three 
dimensional appearance of the quilt is largely due to shading 
variations that are generally gradual, so the energy is 
concentrated at low spatial frequencies. Increasing the energy 
in the second frequency band (Fig. 3B, Movie 2), increases the 
thickness of the weave, whereas decreasing the energy results 
in a flatter, thinner appearance. Increasing the middle to high-
frequency energy (Fig. 3C, Movie 3), leads to a coarser or 
rougher texture, while decreasing the energy in this frequency 
range results in a smoother texture. Varying the relative energy 
of a frequency band, influences how much structures at a 
certain spatial scale contribute to the overall appearance of the 
material. It does not alter existing structures or creates new 
structure. If a material's original spectrum has no structure in a 
band, multiplying the energy in this band will not lead to the 
desired appearance changes, manipulating, e.g., the amplitude 
spectrum of white noise will in general not result in a 
appearance change that is related to a change in material 
property. However, the frequency-band analysis suggests a 
method to transfer qualities across materials, e.g. the soft and 
flexible appearance conveyed by folds can be transferred to a 
material originally rated as rough and stiff [4].  

IV. RETINAL VERSUS MATERIAL SPATIAL FREQUENCY 

We have expressed frequency bands in retinal spatial 
frequencies, but because all measurements were done at one 
distance, they could equivalently have been expressed in 
material spatial frequency. A change in distance alters retinal 
spatial frequency (cpd), but leaves unchanged the material 
spatial frequency (cpm), a concept analogous to object spatial 
frequencies [15]. To determine whether the perceived material 
properties are determined by material spatial frequencies or 
retinal spatial frequencies, [4] conducted a control experiment 
in which we presented images of materials at three different  

 

Figure 3.  Original and manipulated images and their amplitude spectra. The 

middle column shows the original images, the 1st and 2nd column show 
images with increased energy in the frequency bands, and the 4th and 5th 

column show images with decreased energy. (A) undulation band, (B) 

thickness band, (C) roughness band (see also Movies 1–3).  

distances, and showed that at best there was a weak overall 
effect of distance.  

Since retinal spatial frequencies increase with distance, the 
band-pass nature of human visual sensitivity to spatial 
frequencies would be expected to play a role. For example, the 
two images used for roughness were affected in opposite ways 
by the increase in the viewing distance. The first image, which 
was rated as soft, had the critical variations at low to middle 
frequencies. These were shifted to higher spatial frequencies 
with increasing distance, and resulted in a rougher appearance. 
The dominant variations in the second image were already in a 
high frequency region, so increasing the distance moved them 
to a low sensitivity domain. Overall, material judgments 
remained stable over a range of distances from which an 
observer would commonly examine materials. This suggests 
that visual inferences of material properties are more likely to 
be based on estimated material spatial frequencies than on 
retinal frequencies. This finding is in accordance with our 
everyday experience where material properties do not change 
massively with viewing distance. 

V. SPATIAL FILTER BASED IMPLEMENTATION  

As a start towards a rapid hardware implementation of the 
frequency based heuristic for judging material properties, we 
have examined how well a limited number of spatial frequency 
and orientation tuned filters can separate the three opponent 
properties discussed above.  We have used the pyramid scheme 
of [16]. We first ascertained that the filters in the set 
“sp5filters” (6 orientations times 4 spatial frequencies) gave  



 

Figure 4.  Filter responses for fabrics chosen to be exemplary of the opposite 

ends of the properties (A, same as in Figure2). (B) Gray-level heat map of 

filter responses. (C) Filter responses summed over orientation for each spatial-
frequency class for materials in the top three and bottom three categories of 

each material ranking. 

separated responses to white noise filtered in the bands of 
Fig. 3. Then we applied the filters to all of the 161 non-
patterned images of fabrics in the original analysis. Fig. 4B 
shows a gray-level heat map of filter responses to the same 
images as Fig. 2.  It is clear that the filter responses can be used 
to differentiate between the soft and rough, undulated and flat, 
and thick and thin fabrics. To strengthen the generality of the 
frequency-based analysis of material properties, [4] conducted 
a ranking experiment to derive the frequency bands from 
experimental data. In this experiment they used printouts of the 
161 non-patterned images. The observers' task was to sort the 
images independently in nine point classes from “least” to 
“most” undulated, thick, and rough. The sorting was carried out 
on a large table so that images could be seen simultaneously 
and compared directly. No specific instructions regarding the 
viewing distance and the properties were given to the 
observers. However, observers were shown samples of real 
fabrics: A fabric lying flat on the table, and the same fabric 
with folds to illustrate the undulation property, a thinner and a 
thicker fabric to illustrate thickness, and a softer and rougher 
fabric to illustrate roughness. This experiment was less well 
controlled than the monitor based experiments, but had the 
advantage that observers made relative judgments of the 
material properties without being required to explicitly label a 
material as belonging to a certain property category. Fig. 4C 

shows the responses summed over orientation for each spatial-
frequency class, for materials in the top three and bottom three 
categories of each ranking. The results are promising in how 
well the filters perform.   

Since primate striate cortex is a massively parallel 
configuration of scale and orientation tuned filters, these results 
suggest that the frequency-based heuristic can function on 
rapidly extracted image features. One possible implementation 
could be to design a Bayesian categorization procedure that 
uses conditional priors as the embodiment of the heuristic, i.e. a 
prior probability of the presence of a property or its opposite as 
a function of spatial frequency, and then calculates the 
posterior for all six opponent categories. Decisions can then be 
made based on the ratio of posteriors for each opponent pair. 
This scheme allows for categorization based on both high and 
low responses of filters, and where materials have multiple 
attributes, e.g. rough and undulated.  Since the main procedure 
is multi-scale spatial filtering, just like the cortex, it can be 
implemented in parallel using GPU programming 

VI. DISCUSSION 

The main results of this paper are that material properties, 
such as roughness, thickness and undulations, are characterized 
by specific scales of luminance variations. The 2D luminance 
variations arise from the 3D textures of the materials, and 
human judgments of 3D roughness, thickness, and undulations 
vary continuously as a function of relative contrast in 
corresponding 2D frequency-bands. The appearance changes 
that result from the manipulations of the amplitude 
distributions in the three frequency bands are all caused by 
changes of the shading components at different spatial scales. 
The perceived material properties are thus functions of the 3D 
structures of the materials, and are mainly conveyed by shape-
from-shading cues. 

We started our investigation with an experiment asking 
observers to classify images of fabrics with respect to four 
material property dimensions using affordance-related 
questions (soft vs. rough, flexible vs. stiff, warm vs. cool, 
water-absorbent vs. water-repellent). Using Correspondence 
Analysis, we inferred basic material property dimensions   
(undulation, thickness and roughness) potentially underlying 
the affordance dimensions. In another experiment, we asked 
observers to rate a subset of the images with respect to the 
inferred material properties. To better understand the 
relationship between the affordance-based classifications and 
the material property ratings, we computed the correlations 
between the number of observers who classified an image as 
belonging to a certain affordance category and the median 
ratings of the same image obtained from the rating experiment. 
The results are shown in Table 1. Overall, the classifications 
and ratings exhibit medium to weak correlations. The three 
material properties clearly do not capture all the variation in the 
classification data and do not allow differentiating between all 
the affordance-related classifications (e.g. soft vs. rough and 
flexible vs. stiff). Further research has to show whether it is 
possible to describe affordances-related categories as 
combinations of more general material properties and derive 
them directly from images.   



TABLE I.  CORRELATIONS BETWEEN AFFORDANCE-BASED 

CLASSIFICATIONS AND MATERIAL PROPERTY RATINGS 

Affordance-based  

classifications 

Material property ratings 

Undulation Thickness Roughness 

Soft vs 0.49 0.07 -0.56 

Rough -0.29 0.19 0.69 

Flexible vs 0.51 0.00 -0.41 

Stiff -0.23 0.26 0.60 

Warm vs 0.18 0.52 0.15 

Cool 0.10 -0.41 -0.27 

Absorbent vs 0.35 0.30 -0.17 

Repellent -0.19 0.01 0.42 

   

Since the earliest stage of cortical visual processing consists 
of neurons that filter the visual scene in terms of spatial 
frequencies and orientations [17], it is not surprising that spatial 
frequencies play an important role in pre-attentive texture 
discrimination [18], and texture matching [19]. More recently, 
direct scene categorization schemes proposed correlations 
between specific configurations of power spectra and 
perceptual scene dimensions such as naturalness and openness 
[20]. 

While the visual perception of roughness, thickness or 
undulation has not been investigated extensively, the estimation 
of the roughness of surfaces or terrains from images has long 
been an important topic of research in machine vision. A wide 
array of methods has been employed to this end, including 
spatial frequency analysis. In this context, it has been found 
that spatial frequency analysis was often inferior to other 
methods, e.g., statistics derived from gray-tone co-occurrence 
probabilities [21,22]. However, the focus of this line of 
research was on the reliable identification of physical structures 
as, for example, required in remote sensing. Here, we were 
primarily concerned with material appearance and not with the 
veridical recovery of surface properties. Surface properties and 
illumination geometry are conflated in the spatial frequency 
information. The amplitude distribution changes systematically 
with changes in pose, scale, and illumination, and that seems 
correlated with the resulting changes in material appearance. 
An interesting case is presented by slanted surfaces. When 2D 
textures are slanted, the spatial frequencies are increased in the 
image, orientation flows are created [23], and the brightness is 
reduced for Lambertian surfaces. However, the case is more 
complicated when 3D structures are slanted as the structure 
determines the change in brightness [24] and spatial frequency 
[25]. To analyze the interaction of pose, scale, and illumination 
on material perception, [4] analyzed images from the KTH-
TIPS database [26]. In general, slanting materials increased the 
spatial frequencies in the image at short distances, and the 
effect is small or even absent for larger distances. Illumination 
from the side emphasized the finer structure of the fabrics, thus 
causing a shift to higher image frequencies. Interestingly, the 
energy peaks for the fabrics were generally located in one of 
the previously identified frequency bands, and the perceived 
qualities followed the bands, e.g., when the spatial frequency 

peak moved to frequencies higher than the roughness band, the 
material appeared increasingly flat and smooth.  

It is obvious that we have looked at a very limited set of 
material affordances and properties.  We intend to use our own 
high-resolution images of a much larger set of materials to test 
the usefulness of the frequency-based heuristic.  We also intend 
to use filters at more spatial scales to make more fine-grained 
frequency distinctions. In the analysis above it made only a 
little difference whether we summed filter outputs over 
orientations or used a winner-take-all rule. Whether this is true 
in general remains to be tested.  Finally, patterns on fabrics or 
painted images on other materials will need to be separated 
from the luminance variations germane to judging properties of 
3-D textures. Since pattern distortions in perspective images 
provide orientation and frequency information that gives 3-D 
shape information [27], solving this problem will provide 
insights on how parallel outputs of orientation and frequency 
tuned filters are used simultaneously to solve shape from 
shading and 2-D texture/pattern. Another thorny problem that 
we still have to tackle is to calculate material versus retinal 
spatial frequency. This will require judging size of objects 
across distance variations, and connecting to work on the 
perceived structure of space. 

The neural substrate for the proposed frequency heuristic 
remains to be investigated. fMRI studies suggest that cortical 
areas V4 and PIT are important stages for constructing 
information about material properties [28]. An understanding 
of how neurons in these areas use the spatial frequency 
information from earlier areas to make decisions about material 
affordances, especially across patterns and distance, would be 
extremely insightful about how to accomplish efficient 
machine implementations for robotic vision. 
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