Saliency and Affordance in Artificial Visual Attention

Jan Tünnermann & Bärbel Mertsching

July 13, 2014
Motivation & Introduction

- Like humans, autonomous robots need to perceive and act in dynamic environments.

→ Mimic human attention mechanisms to filter relevant from irrelevant information at early stages.
Motivation & Introduction

- A testbed for autonomous mobile robots:

Autonomous GETbot

Highly mobile GETjag

[Source: Warwick Mobile Robotics]
Motivation & Introduction

Bottom-up attention (Saliency):

- Classic and region-based models:
 - [Itti et al. 1998]
 - [Aziz / Mertsching 2008]
 - [Tünnermann / Mertsching 2013]
- Concepts:
 - Local contrasts.
 - Feature Integration.
 - FOA selection.
Motivation & Introduction

Bottom-up attention (Saliency):

- Task relevant objects are often not salient.
- Salient objects are often not task relevant.
Motivation & Introduction

Top-down attention:

- Classic and region-based models:
 - [Navalpakkam / Itti 1998]
 - [Aziz / Mertsching 2008]
 - [Tünnermann et al. 2013]
- Concepts:
 - Task specific feature weighting.
 - Template-based visual search.
Motivation & Introduction

Top-down attention:

- Targets must be known in advance.
- The appearance of targets may differ in various situations widely.
Motivation & Introduction

Affordance-based attention?

- Attention towards potential action targets.
- Not overly general, not overly specific.
- In combination with saliency?
Outline

- Introduction
- Measuring Human Attention in Natural Scenes
- Affordance-based Attention
- Combining Affordance and Saliency
- Discussion and Outlook
Measuring Human Attention in Natural Scenes

- **Common practice**
 - Eye-tracking experiments.
 - Psychophysical experiments (reactions times, detection accuracy, etc.).

- **Difficulties in eye-tracking with regard to natural scene perception**
 - It only reveals overt attention shifts.
 - It is highly influenced by hard-to-control trop-down influences [Yarbus 1967].
 - Center bias, etc.

- **Difficulties with most psychophysical tasks**
 - Use of highly artificial stimuli, very unlike natural scenes.

- **A promising option**
 - The change-blindness paradigm.

[Image of eye-tracking equipment and diagram showing the central representation, WTA, saliency map, feature maps.]

[Koch / Ullman, 1985]
Saliency and Affordance in Artificial Visual Attention

Change Detection is Enhanced for Affording Objects

1. Subsequent Work & Conclusion
Subsequent Work & Conclusion
1. Subsequent Work & Conclusion
Subsequent Work & Conclusion

Change Detection is Enhanced for Affording Objects
Saliency and Affordance in Artificial Visual Attention Change Detection is Enhanced for Affording Objects.
Subsequent Work & Conclusion

1. Subsequent Work & Conclusion
Saliency and Affordance in Artificial Visual Attention Change Detection is Enhanced for Affording Objects

Subsequent Work & Conclusion
Saliency and Affordance in Artificial Visual Attention Change Detection is Enhanced for Affording Objects.

1. Subsequent Work & Conclusion
Measuring Human Attention in Natural Scenes

The Change-Blindness Effect: How is attention involved?

- The disruption removes the signal that guides attention [Rensink et al. 1997].

Attention-related manipulations that selectively reduce CB:

- “Central interest” changes vs. “marginal interest” changes [Rensink et al. 1997].
- “Gaze cues attenuate change blindness in the flicker paradigm” [O'Donnell / Langton, 2003].
- “The effects scene inversion on change blindness” [Shore / Klein, 2000].
- “Enhancing implicit change detection through action” [Tseng et al., 2010].
- “Change detection is enhanced for objects in the action space” [Tünnermann et al., 2012].
Measuring Human Attention in Natural Scenes

Normal View

19% p < 0.05

Upside Down

56% p < 0.05

38% p = 0.05

32% p = 0.05

[Tünnermann et al. 2012]
Outline

- Introduction
- Measuring Human Attention in Natural Scenes
- Affordance-based Attention
- Combining Affordance and Saliency
- Discussion and Outlook
Affordance-based Attention

General approach

- Region-based saliency [GET Lab]:

 - Include a graspability estimate:
Affordance-based Attention

Graspability representation:
- ECV (Early Cognitive Vision).
- A sparse 3D scene representation.
- Developed by Norbert Krüger’s group in Odense, Denmark.

Affordance estimate:
- Grasp points are projected into 2D.
- The relative density of grasp points is calculated for every region.

[Tünnermann / Krüger / Mertsching / Mustafa; in review]
Affordance-based Attention

Design of Experiment 1 & 2

- A pure region-based affordance model is compared to the popular bottom-up saliency model by Itti et al. in a change detection task.
- Removals are based on each model’s prediction.
- The single shot change-blindness paradigm was used.
- 40 participants in experiment 1 and 40 participants in experiment 2 (a control with images shown upside down).
Saliency and Affordance in Artificial Visual Attention
Saliency and Affordance in Artificial Visual Attention
Affordance-based Attention

Stimulus Material of Experiment 1 & 2
Results of Experiment 1

- Affordance-based predictions have a significantly better detection performance.
Affordance-based Attention

Results of Experiment 2

- Affordance-based predictions have a significantly better detection performance.
- The overall performance, as well as the difference, is reduced in experiment 2 when the images are shown upside down.
Combining Affordance and Saliency

Results of Experiment 1 & 2

- Affordance-based predictions have a significantly better detection performance.
- The overall performance, as well as the difference, is reduced in experiment 2 when the images are shown upside down.
- The affordance-based predictions differ significantly in experiment 1 and 2, whereas the saliency-based predictions are not significantly different.

→ Affordance produces an attentional benefit.
Outline

- Introduction
- Measuring Human Attention in Natural Scenes
- Affordance-based Attention
- Combining Affordance and Saliency
- Discussion and Outlook
Region-based affordance can be combined with the region-based saliency:

Does this further improve the model with regard to human performance in the change detection task?
Affordance-based Attention

Design of Experiment 3 & 4

- The flicker change-blindness paradigm was used.
- 10 participants in experiment 3 (pilot to test the flicker paradigm).
 - Stimulus material from experiment 1 & 2 with the region-based affordance and saliency (Itti) predictions.
- 40 participants in experiment 4
 - A pure region-based affordance model is compared to pure region-based saliency and their combination.
Results of Experiment 3

- In the flicker paradigm the images alternate until the response is given.
- The results of the flicker paradigm pilot replicate the earlier findings of the single-shot paradigm.
Affordance-based Attention

(c) Affordance, (d) Saliency, (e) Combination of both.
Affordance-based Attention

Stimulus Material of Experiment 4

- “Foreground scenes”
Evaluation & Results (experiment 4)

- We fail to find a significant difference between the region-based affordance region-based saliency predictions.
- We find no advantage for the combined approach.

What could explain this dissociation with our earlier results?

- No enhancement due to saliency is in line with other studies [Stirk / Underwood 1997].
- Different saliency model.
- Scene type (no real background objects).
- More difficult images.
Affordance-based Attention
Results of Experiment 4 (contd.)

- Distribution of response times for every image mapped in the estimated affordance—saliency space.
- Difficult images have long response times.
- For the saliency-based predictions there may be an effect of affordance on response times.
Outline

- Introduction
- Measuring Human Attention in Natural Scenes
- Affordance-based Attention
- Combining Affordance and Saliency
- Discussion and Outlook
Affordances are important in the guidance of attention

- Support from experiments 1, 2 and 3 where they outrank saliency.
- Support from the literature:
 - Affordances influence attention in cueing experiment \cite{RobertsHumphreys2011, GarridoVasquezSchubo2014}.
 - EEG and brain imaging studies \cite{Handy2003}.

Affordance and saliency may not be combinable in all situations (experiment 3).

- Combination strategies?
- Prefer affordances if available?
Discussion and Outlook

Goal:
Deeper integration of affordance and attention.

- Attention may influence the scene representation and thereby the grasp estimation.
- Affordances may in turn feed back to attention.
Discussion and Outlook

Goal:
Real time implementation in a robot.
- Practical evaluation.
- Integration with action execution.
Thank you for your attention!

Questions?