RAPID SENSING OF MATERIAL AFFORDANCES

MARTIN GIESEL & QASIM ZAIDI

SUNY College of Optometry
New York

Affordance Workshop, Berkeley 2014
Affordances

<table>
<thead>
<tr>
<th>Properties</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>soft – rough</td>
<td>If you felt this material on your skin would it feel soft or rough?</td>
</tr>
<tr>
<td>flexible – stiff</td>
<td>If you folded or draped this material would it be stiff or flexible?</td>
</tr>
<tr>
<td>absorbent – repellent</td>
<td>Would you use this material to repel water or would you use it to absorb water?</td>
</tr>
<tr>
<td>warm – cool</td>
<td>Would clothes made of this material keep you warm or cool?</td>
</tr>
</tbody>
</table>

![Diagram of property comparison](image)
Consensus

Material property classification

- **Soft**
 - Images of soft materials
- **Rough**
 - Images of rough materials
- **Flexible**
 - Images of flexible materials
- **Stiff**
 - Images of stiff materials
- **W.-absorbent**
 - Images of water-absorbent materials
- **W.-repellent**
 - Images of water-repellent materials
- **Warm**
 - Images of warm materials
- **Cool**
 - Images of cool materials

Rapid Sensing of Material Affordances

Martin Giesel & Qasim Zaidi
Associations

Material property classification

<table>
<thead>
<tr>
<th>Associations</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft & Flexible</td>
<td></td>
</tr>
<tr>
<td>Rough & Stiff</td>
<td></td>
</tr>
<tr>
<td>Water-absorbent & Warm</td>
<td></td>
</tr>
<tr>
<td>Water-repellent & Rough</td>
<td></td>
</tr>
<tr>
<td>Flexible & Cool</td>
<td></td>
</tr>
</tbody>
</table>

Rapid Sensing of Material Affordances

Martin Giesel & Qasim Zaidi
Frequency band analysis

Soft vs. rough

6.5 – 15.2 cpd

Spatial frequency (cpd)
Relative energy

Rough
Soft

0 2 4 6 8 10 12 14 16 18
0.01 0.02 0.03 0.04 0.05

Spatial frequency (cpd)
Frequency band analysis

Undulated vs. flat

0.5 – 2.3 cpd

Spatial frequency (cpd)
Relative energy

FLAT
UNDULATED
Thin vs. Thick

2.3 – 4.3 cpd

![Image of thin and thick material samples]

![Graph showing frequency band analysis with relative energy on the y-axis and spatial frequency (cpd) on the x-axis, comparing thin and thick materials.]

Rapid Sensing of Material Affordances
Frequency band manipulations

- Spatial frequency bands
 - 0.5 – 2.3 cpd: Undulation (flexibility) band
 - 2.3 – 4.3 cpd: Thickness band
 - 6.5 – 15.2 cpd: Roughness band

- Multiplicative scaling of frequency band

\[
\text{Multiplicative scaling} = \text{FFT}^{-1} \left(|\text{FFT} (\text{signal})| \times \text{constant} \right)
\]

- Constant total energy
Undulation (flexibility) band
0.5 – 2.3 cpd
Thick or thin
Roughness band
6.5 – 15.2 cpd
Transfer of structures

Examples

MARTIN GIESEL & QASIM ZAIDI

Rapid Sensing of Material Affordances
Frequency band manipulations

Transfer of structures

& Φ_2

Rapid Sensing of Material Affordances
Transfer of structures

\((\mathcal{M} + \mathcal{Q}) \& \Phi_2\)
Stimuli

<table>
<thead>
<tr>
<th>Volume</th>
<th>Increased++</th>
<th>Increased+</th>
<th>ORIGINAL</th>
<th>Decreased-</th>
<th>Decreased--</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roughness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
After adaptation, decide which of the two images is thicker. Press key.

Which of the two images was thicker?

0.8s
60s/10s
0.25s
2s
Results

- **Image 1**
 - More volume
 - Thicker
 - Rougher

- **Image 2**
 - More volume
 - Thicker
 - Rougher

N=5
Results

Image 1

Image 2

% more volume

% thicker

% rougher

N=5

0
25
50
75
100

0
25
50
75
100

0
25
50
75
100

0
25
50
75
100

** ** *

Volume Thickness Roughness

*
Retinal versus material spatial frequency

Comparison monitor

Test monitor

Test monitor

Test monitor

132 cm

66 cm

33 cm

- EQUAL
- FAR
- NEAR

Control experiments Distance experiment
Control experiments Distance experiment

Retinal versus material spatial frequency

- **Test monitor**
 - 132cm

- Comparison monitor
 - 66cm

- Test monitor
 - 33cm

- **EQUAL**
- **FAR**
- **NEAR**

Image 1

- % more volume
- N=3

Image 2

- % thicker

% rougher

MARTIN GIESEL & QASIM ZAIDI

Rapid Sensing of Material Affordances
Retinal versus material spatial frequency

- **Comparison monitor**
- **Test monitor**

<table>
<thead>
<tr>
<th>Volume</th>
<th>Thickness</th>
<th>Roughness</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>90</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

% more

- **EQUAL**
- **FAR**
- **NEAR**

Rapid Sensing of Material Affordances

MARTIN GIESEL & QASIM ZAIDI
Material property ranking
Undulation (Flexibility)

Control experiments
Material property ranking

Rapid Sensing of Material Affordances

Martin Giesel & Qasim Zaidi
Thickess

Control experiments

Material property ranking

Rapid Sensing of Material Affordances

Martin Giesel & Qasim Zaidi
Roughness

Control experiments

Material property ranking

Rapid Sensing of Material Affordances
Validation of frequency bands from ranking data

Spatial frequency bands (cpd)

Correlation

Undulation
Thickness
Roughness

0 5 10 15 20
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1

Rapid Sensing of Material Affordances
Material rankings and affordances

- Rough
- Flexible
- Warm
- Repellent

Correlation

Material properties
- Undulation
- Thickness
- Roughness

Rapid Sensing of Material Affordances
Limitations

- Homogeneous, texture-like materials
- Fronto-parallel presentation
- Narrow range of distances
- Limitations imposed by the contrast sensitivity for spatial frequencies and cross-band masking effects
- Role of structure
Structure

SOFT

ROUGH
Spatial frequency information plays a role in the perception of material properties and material affordances.

The results demonstrate the importance of spatial structure and scale as opposed to global image statistics.

Structure at specific spatial scales might be directly related to certain material properties.

The method of frequency manipulation could be useful for fast and efficient material editing.
Thank you

Supported by NEI grants EY07556 & EY13312 to QZ, and DFG Research Fellowship GI 806/1-1 to MG.
Consensus

Rapid Sensing of Material Affordances

Martín Giesel & Qasim Zaidi
Associated affordances

Images rated as...

- soft
- rough
- flexible
- stiff
- w.-absorb.
- w.-repell.
- warm
- cool

... were also rated as...

- soft
- rough
- flexible
- stiff
- w.-absorb.
- w.-repell.
- warm
- cool

Percent
Manipulation of noise and synthetic texture

A

B
Joint frequency manipulations

A

B

C

D

Spectral weighting functions

Additional material
Paper sorting data

<table>
<thead>
<tr>
<th></th>
<th>Undulation</th>
<th>Thickness</th>
<th>Roughness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undulation</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness</td>
<td>0.28</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Roughness</td>
<td>-0.35</td>
<td>0.21</td>
<td>1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>W_t</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undulation</td>
<td>0.619</td>
<td>297</td>
<td>160</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Thickness</td>
<td>0.651</td>
<td>312</td>
<td>160</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Roughness</td>
<td>0.692</td>
<td>332</td>
<td>160</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Undulated \sim Thick</th>
<th>Undulated \sim Rough</th>
<th>Thick \sim Rough</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs. 1</td>
<td>0.162</td>
<td>-0.185</td>
<td>0.202</td>
</tr>
<tr>
<td>Obs. 2</td>
<td>0.248</td>
<td>-0.096</td>
<td>0.257</td>
</tr>
<tr>
<td>Obs. 3</td>
<td>0.132</td>
<td>-0.293</td>
<td>0.160</td>
</tr>
</tbody>
</table>
Implementations in the spatial domain

Martin Giesel & Qasim Zaidi
Rapid Sensing of Material Affordances
Implementation in the spatial domain

Additional material

Spatial implementation

Rapid Sensing of Material Affordances