A robot enters a warehouse where it needs to rearrange disorganized boxes.

Motivation

- Sokoban game (Warehouse keeper)
 - Goal: arrange boxes in desired positions by pushing
 - Limited action & action sequence matters
 - NP-hard problem
- Problem for the robot
 - Understanding the environment
 - Understanding objects’ affordances

Approach

Assumption

Without any prior knowledge of map and objects

Goal

Build an affordance labeled world map

Purpose

A robot to figure out how to rearrange the world

Mapping

- 3D Point Cloud acquisition
 - Microsoft Kinect mounted on the head of PR2
- Grid world mapping
 - 2D occupancy grid map
 - Frontier-based exploration
 - Odometry based EKF SLAM

Prediction

- Affordance labels
 - Pushability in 4 directions
 - Unit: one cell
 - Affected by relative positions
- Prediction [Kim et al. 2014]
 - Use geometric features
 - Unary features – shape, normal, centroid, span
 - Pairwise features – relative positions of neighboring cells
 - Learn parameters from examples scenes with randomly placed objects
 - Logistic regression
 - Predict each affordance label

Interaction

- Goal
 - Reduce overall belief entropy of the affordance map
- Solution
 - Interact with the object to discover its affordance
- Interaction Planning
 - Choose an action that reveals maximum information
- Probability distribution of Markov random field

Conclusion & Future work

- Semantic mapping of object affordance for interactive manipulation
 - Map the world with 2D occupancy grid
 - Predict affordances using geometric features
 - Estimate information gain of possible interaction
 - Train and learn for better prediction and optimal manipulation
- Future work
 - Various objects (e.g. household objects) for more generalized planning
 - Complex manipulation of affordances (e.g. pulling, lifting, etc.)
 - Adaptable classifier for different robot configurations